An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

نویسندگان

  • Marc Galland
  • Dongli He
  • Imen Lounifi
  • Erwann Arc
  • Gilles Clément
  • Sandrine Balzergue
  • Stéphanie Huguet
  • Gwendal Cueff
  • Béatrice Godin
  • Boris Collet
  • Fabienne Granier
  • Halima Morin
  • Joseph Tran
  • Benoit Valot
  • Loïc Rajjou
چکیده

Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive "multi-omics" dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered "multi-omics" study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genotyping of Endosperms to Determine Seed Dormancy Genes Regulating Germination Through Embryonic, Endospermic, or Maternal Tissues in Rice

Seed dormancy is imposed by one or more of the embryo, endosperm, and maternal tissues that belong to two generations and represent two ploidy levels. Many quantitative trait loci (QTL) have been identified for seed dormancy as measured by gross effects on reduced germination rate or delayed germination in crop or model plants. This research developed an endosperm genotype-based genetic approac...

متن کامل

A Genome-Wide Survey of Imprinted Genes in Rice Seeds Reveals Imprinting Primarily Occurs in the Endosperm

Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds...

متن کامل

Identification of ZHOUPI Orthologs in Rice Involved in Endosperm Development and Cuticle Formation

The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two...

متن کامل

Ubiquitin-mediated control of seed size in plants

Seed size in higher plants is an important agronomic trait, and is also crucial for evolutionary fitness. In flowering plants, the seed comprises three major anatomical components, the embryo, the endosperm and the seed coat, each with different genetic compositions. Therefore, seed size is coordinately determined by the growth of the embryo, endosperm and maternal tissue. Recent studies have r...

متن کامل

Nuclear endosperm development in cereals and Arabidopsis thaliana.

The nuclear endosperm of monocots, including the cereal species maize, rice, barley, and wheat, represents humankind’s most important renewable source of food, feed, and industrial raw materials. In addition, the endosperm is an attractive system for developmental biology studies. Similar to the embryo, the endosperm is the result of a fertilization process and therefore may be considered an or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017